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J. Phys: Candens. Matter 4 (1992) 48014806. Printed in the UK 
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AbslracL The comlation Bctor f2 of impurity diffusion in bodycentred cubic metals is 
calculated aFsuming the competition of nearest- and next-nearest-neighbour monovacancy 
j u m p  A four-frequency model in which only the impurity jump frequencies differ f” 
those of the host atoms is considered. fa is calculated as a function of temperature for 
d i f f m t  impurity migration energies and impurity masses. 

A comparison of f2 with experimental data shows qualitative agreement with the 
temperature function of the isotope effect for chromium diffusion in tungsten, thus 
supporting the hypothesis of high-temperature contributions of next-nearest-neighbour 
vacancy j u m p  in group V and VI metals. 

1. Introduction 

The diffusion mechanism in the body-centred cubic (BCC) metals of the groups V 
and VI has to be considered as an open question [l]. The strong curvature of the 
Arrhenius plot (In D against 1/T) of the diffusion coefficient D was explained by 
the competition of two diffusion mechanisms with different activation energies or by 
the temperature dependence of diffusion energies and entropies, respectively. It is 
well known that, in the lower-temperature range, material transport occurs via mono- 
vacancy jumps. In the temperature range close to the melting point, contributions 
of divacancies [2], self-interstitials [3], or next-nearest-neighbour (”N) monovacancy 
jumps [4] are assumed to dominate the diffusivity in group V and VI metals. On the 
contrary, it was proposed that the phonon mode softening, which is responsible for 
the distinct enhancement of the diffusivity in the lower-temperature range of the BCC 
phase of group IV metals, explains the curvature of In D versus 1/T in group V and 
VI metals as well [5]. 

It could be demonstrated that the calculated diffusion energies for V, Cr and 
W, the heat of thermotransport in V, and the measured temperature function of the 
isotope effect in Nb are compatible with the concept of nearest-neighbour (NN) and 
NNN monovacancy jumps [l, 41. 

For that purpose the temperature function of the correlation factor f,,(T) was 
calculated for the self-diffusion in BCC metals taking into account the competition of 
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monovacancy jumps via NN and NNN sites [q. j o (T)  was calculated applying a Monte 
Carlo simulation as well as the method of Compaan and Haven [I. 

In the present paper the correlation factor f , (T)  of impurity diffusion is cal- 
culated for substitutionally dissolved impurities in BCC metals using a Monte Carlo 
simulation. f,(T) depends on the jump frequency ratio wTm/wyN of NNN to NN 
neighbour jumps. f,(T) is determined for different migration energies and different 
impurity masses. 

Some simplifying assumptions are made for the vacancy jump frequencies, which 
are deduced from experimental results of self-diffusion. Assumptions of a special 
impurity diffusion model are avoided in this first approximation. 

2. I h e  four-frequency model OC the impurity diffusion in body-ceotred cubic metals 

In the present approximation it k assumed that only the jump frequencies wFNN and 
w?" of the impurities differ from the jump frequencies WON" and wrN of the host 
atoms. In this simple four-frequency model it is assumed that none of the host atom 
jumps k intluenced by the presence of the impurities. 

The experimental selfdiffusion data can be analysed according to 

Do(T) = Dol + Do, = exp(-Qol/M') + @, exp(-Q,,/kT). (1) 

For group V and VI metals (except 'Ea) these analyses lead to the fouowing approxi- 
mations for the diffusion energies Q and preexponential factors Do [SI: 

Qol/Tm Y 1.5 meV K-' P) 
Qoz/Tm Y 2.0 meV K-' (24 
D , O , / D , O ,  1000. (k) 

When additionally taking into account the results of quenching investigations as well 
as positron annihilation studies, this leads to the following approximation for the 
vacancy formation energy H f ;  [9]: 

Hrv/Tm E 1.0 meV K-'. (3) 

Since Q = HF + H', this means that for NN and N" jumps the vacancy migration 
energies are 

H&,/T, Y 0.5 meV K-' 

HgNN/T, 1.0 meV K-'. ('w 
(44 

The self-diffusion coefficient for mixed NN and N" monovacancy jumps is given by 
141 

D o ( T )  = u Z c l v f o ( T ) ( ~ ~ N  + w:") (5) 

where a is the lattice constant and clV is the vacancy concentration. From equations 
(1) and (5) it follows that 

wO"~/WD" = Doz/D,I = ( % / D & )  exp[-(Qoz- Qol/kTl (6) 
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with 

Q o a  - Qoi HOM" 
deduced from equation (4). 

The vacancy jump frequency w is given by 

w = U exp(SM/k) exp(-HM/kT). 

In the present calculations it s simply assumed that the vacancy migration entropies 
SM are equal for impurity diffusion and selfdiffusion (ASgN = AS:" = 0). 
Furthermore the lattice frequency ratio vz/v0 is expressed by (mo/m,)l~z. This 
leads to the equations 

w t N / w f N  = (mo/mz)'/2 exp(-AH&/rCT) (9) 

wt"/wf" = (mo/m2) ' /2  exp(-2AHtN/kT).  (10) 

3. The method of calculation 

The method is based on the ideas developed by Baker  [lo] and de Bruin et ai [ll], 
to determine., for the case of a single atomic jump mechanism by monovacancies, the 
net probability of an atomic jump in the opposite direction relative to its preceding 
jump. Their starting point was an equation derived by Mullen [12]. When more than 
one diffusion mechanism is operative, a similar method can he used. However, in that 
case the starting point can no longer be the equation that Mullen derived. Then we 
have to use a more general equation derived by Howard 1131. Applying this equation 
to the case of two jump mechanisms with jump lengths into the x d i r d o n  1 ,  and I , ,  
occurring in fractions c, and c, of the total number of jumps, the correlation hctor 
for displacements into the x direction is 

f, = 1+2b.Tl(I-T,)- 'd  (11) 
with b = (c,lt + ~ l~ ) -1 (c lZ i , c212)  and 

d =  (k) .  
I is the 2 x 2 unit matrix and T, is a 2 x 2 matrix containing the elements t i j ,  defined 

(12) i j  .. 
bY 

t . . = p ' J - p -  
$3 + 

where p g  is the probability that, after the atom has made a jump of type i, its 
next jump will be of type j with its projection on the x axis into the same or into 
the opposite d i r d o n .  Jumps with zero displacements into the x direction are not 
considered. Substituting 

S=T1(l-T1)- '  (13) 

1, = 1 I ,  = 2 (14) 

and 
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the lattice parameter being set on 2, for ease of calculation, the equation reduces to 

f, = 1 + W ( C 1  + 4 c z ) l k ( s l l +  2%) i- 2C2(% + 2szz)l (15) 
with 

c1 = 8w,"/(8wTN i- 2~:") % = 2wcNN/(8w," +- 2 ~ ; " )  

SI1 = P I l ( 1  - tzz) + ~ 1 2 ~ 2 1 1 / ~  

$21 = hl /D 

0 = (1 - h1)(1- hz) - w,,. 

811 = tlZ/D 
522 = [tzz(l - til) -I- tlZt,ll/D 

and 

The probabilities p z  are calculated by a Monte Carlo method. The impurity is placed 
in the origin, imagining that it just made a jump from position (l,l,l) or from (2,0,0). 
The first case is an NN jump (type 1); the second is an N" jump (type 2). 

lb calculate t l I  and t,, the vacancy starts a large number of times from (1,lJ) to 
make a random walk through the lattice. When it returns to the origin, the random 
walk is terminated. The,number of times that the wcancy jumps back to the origin 
gives the probabilities p z :  ihe jumps from (IJJ), (1,-1,1), (IJ-I) and (1,-1,-I) 
contribute to p!]; the jumps from (-l , l , l) ,  (-1,-l,l), (-1,l-I) and (-1.-1,-1) 
contribute to pi1. The vacancy jumps from (2,0,0) and (-2,O.O) give the probabilities 
p? and p i z .  For the calculation of t,, and t,, the vacancy starts from (2,0,0). 

Since there are four different jump frequencies, the vacancy has different jump 
probabilities from sites close to the origin. Therefore for each of those sites an array 
is formed with 14 jump probabilities wir ie. eight NN and six N" jumps. The sum 
of these probabilities forms an interval 

containing 14 subintervals of length wi. For sites farther from the origin the interval 
is simply 

[0,8w,"+ G w , " ~ ] .  

A random number is drawn within the interval. The subintewal in which it lies 
determines which jump will be made by the vacan,cy. The.Fcancies that arrive in a site 
in the plane z = 0 will contribute equally to p;' and pfI. Since tij is the difference 
between these probabilities, it is possible to reduce the computer calculating time by 
terminating the walk of these wcancies. For the same reason the walk of vacancies 
can be stopped if they are relatively far from the origin. It turned out that a distance 
of ten lattice parameters was 'far'. 

4 Results 

For the numerical calculations, T, = 3000 K and thus HgN = 1.5 eV was used. 
AHfN was varied in steps of 0.1 eV &om -0.6 to +a6 eV. For the mass ratios 
mo/mz the values $, 1 and 3 were taken into account. The calculations of the jump 
frequency ratios were performed by use of w t N  = 1. 
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For each value of AH,!& and mo/mz the impurity diffusion correlation factor fi 
was calculated from T/T,  = 0.4 to T/T,  = 1 in steps of a l .  The vacancy made 
Woo0 stam, from both (l,l ,l) and (2,0,0), which gave statistical errors smaller than 
0.002 The results are shown in figure 1. me size of the points is larger than their 
inaccuracy. lb show the coherence of the points, datum points With the same value 
of A HfN have been connected by straight lines. 

For large negative values of A H#N the impurity is relatively mobile so that the 
vacancy has a high probability of exchanging with it, resulting in a low value of fa. 
AHfN = 0 and m,,/m, = 1 corresponds to the case of self-diffusion. The results 
for this case agree. well with those calculated with other methods [6]. 

5. Discussion 

In the present model, some rough simplifications have been made in order to avoid 
assumptions of a special impurity diffusion model. Fmt, differences in the migration 
entropies are neglected, i.e. ASM = 0. Secondly the binding energy AHFv between 
the impurity and vacancy s considered to be zero. A Hf, = -A Hrv can be deduced 
from the frequency ratio of associative and dissociative jumps of the impurity vacancy 
pair, w4 and w3 respectively, according to w4/w3 = exp(AH?,/kT). Thus, the 
assumption that all host atom jumps have the frequency w,, leads to A HFv = 0. 

N - 

0.4 0.6  0.8 1 . 0  

* N 

.A*.& 

0 . 4  0.6 0.8 1.0  0 . 4  0.6 0.8 1.0 
T/T, T/Tm 

( b )  (4 
plslrr L Correlation hmr fi as a function of temperature for different values of 
AH& and ma/m2:  (Q) mo/m2 = 3; (b) malm2 = 1; (c) malm2 = i. F" 
mp to bottom, AH& varies m steps of 0.1 eV t" +a6 to -0.6 eV. 

Because of these simplifications it becomes obvious that a comparison between 
calculated correlation factors fi and experimentally determined isotope effects E, 
can only be qualitative. The comparison is further complicated by the fact that the 
kinetic energy factor A K  in E = A K f is not well known. 

The temperature function of E2 for the impurig diffusion in group V and VI 
metals was only measured for Fe in V [14] and MO and Cr in W [U]. Coleman et a2 
[14] have investigated E, for Fe in V between 1300 and 2100 K, where E, decreases 
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from 0.7 to 0.3. However, recent measurements found the result that E, (1300 K) 
N 0.32 [lq.  Furthermore, the plots with mol% = 1 and a small negative value of 
AH#N (see figure 1) indicate that the measurements of Coleman et al are diflicult 
to interpret. 

For Cr in W, Ez was measured between 0.57 T, and 0.73 T,, resulting in a 
temperature-independent E, = 0.13 f 0.02 [U]. For MO in W, E, increases from 
0.16 to 0.21 between 0.52 T, and 0.60 T,,, while E, is about 0.32 f 0.U3 between 
0.66 T, and 0.73 T, [lq.  

me experimental values of AQ = Q, - Qo for the same temperature range are 
AQ(Cr) N -0.65 eV and AQ(Mo) N -0.43 eV 11.51. When disregarding AHFv 
and the temperature dependence of fz, AQ can be approximated by AQNN N 

AHIN and AQNNN = 2AHgN. For Cr in W, is about 2Tm. Thus AQ(rk) 
is between AHEN and 2AH& With AQ N 1.5AHZN the experimental wlues 
of AQ correspond to AHfN(Cr) N -0.4 eV and AHFN(Mo) N -0.3 e\l (In 
reality the amount of AHM should be smaller, as Tm(W)/3000 cz 1.2 and as 
AH:" is expected to be about A H g  [16].) With mo/mz N 0.3 for Cr in Wand 
mo/mz = 0.5 for MO in W the following temperature functions of f, can be derived 
from figure 1. For Cr in W f, is about 0.09 and almost temperature independent 
between 0.57 T, and 0.73 T,. For MO in W, f, increases from 0.19 to 0.25 between 
0.52 T, and 0.6 T, and remains constant up to 0.7 T,. Qualitatively this is in 
agreement with the temperature behaviour of E,. In particular the temperature 
behaviour of fa for Cr in W supports the idea of the NN and N" jump competition 
in group V and VI metals. In the case of exclusively NN monovacancy jumps, f, and 
thus E, should exhibit a strong increase with rising temperature (see e.g. 117). 
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